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Supersonic nozzle flows of a condensable vapour are considered in the high acti- 
vation limit for homogeneous nucleation. Conditions are determined under which 
the final collapse of the supersaturated state is described by a condensation shock. 
It is shown that the shock zone is associated with droplet growth: droplet pro- 
duction occurs in a thin layer upstream of the growth region. Some new scaling 
laws are obtained for the structure of the production layer. 

1. Introduction 
Condensation effects in expanding flows have been examined in a wide variety 

of contexts. Their appearance in supersonic wind tunnels, due to the presence 
of small amounts of water vapour, is well known (Lukasiewicz & Royle 1953). 
In  hypersonic tunnels test section temperatures are often low enough for con- 
densation of the working fluid itself to limit the performance of the facility 
(Clark 1963). Analyses have been carried out for metal vapours with respect to 
their possible application in propulsive devices for space vehicles (Hill, Whitting 
& Demetri 1963). Currently, nozzle flows are being increasingly used as a quan- 
titative tool for the general study of nucleation rates (Andres 1969). Reviews of 
both the theoretical and the experimental work can be found in Wegener (1969, 
1975). Earlier work in this field has been well documented by Wegener & Mack 
(1958) and Stever (1958). 

Figure 1 shows a conventional pressure-temperature diagram for nozzle 
flows. Reservoir conditions correspond to the vapour state. As the flow expands 
the initial isentrope crosses the co-existence line at  the saturation point x,. 
Since the growth rate of the condensed phase is zero at x, a region of supersatu- 
rated flow will exist. For homogeneous or self-nucleation it is often observed 
that this supersaturated state persists over a significant distance downstream 
of x, and, further, that the eventual breakdown of the supersaturated state occurs 
in a rather abrupt manner. Investigations of this sudden collapse led to the 
concept of a condensation shock. Strictly, the shock is a narrow region whose 
structure is defined by the local heat release. Within the collapse zone the growth 
rate is large. As the position of the collapse moves further downstream, corres- 
ponding to smaller growth rates, the condensation zone is of a more diffuse 
nature (see, for example, figure 5, Hill 1966). 

For sufficiently large growth rates the collapse occurs cIose to the initial’ 
saturation point. Apart from a thin transition layer near x,, the bulk of the flow 
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FIGURE 1. pu,  T curve (schematic). 

is then governed by the saturated equilibrium relations. Data for air suggest 
that, in some cases, near-equilibrium collapses of this kind may be due to hetero- 
geneous nucleation (Daum & Gyarmathy 1968). 

Only homogeneous nucleation is considered in this paper. It is convenient to 
introduce both a growth parameter h (ratio of a flow time to a growth time) and 
a production or nucleation parameter K.  The latter parameter is proportional 
to the inverse of a non-dimensional activation energy required for the formation 
of droplets of critical size. K Q 1 is equivalent to low production rates or high 
activation energies. Although the growth parameter is controlled in part by the 
nozzle geometry, the nucleation parameter, for any given vapour, is a function 
only of the reservoir conditions. 

Experimental observations of condensation shocks should occur in flows for 
which h 3 I and K < 1. Calculations for various vapours (figure 2) indicate that 
there is indeed a broad range of reservoir conditions over which K Q 1. Flows 
with h >> 1 will always arise if the expansion rate is sufficiently slow. The present 
paper is concerned with quasi-one-dimensional nozzle flows ($2) in the limit 
h+m, K+O. In  particular, the paper discusses the existence, position and 
structure of condensation shocks. Classical shock analyses, which are concerned 
simply with conservation laws, do not provide information on these points 
(Wegener & Mack 1958). 

As a means of ordering the double limit it is convenient to introduce an effective 
onset point for the nucleation process. Rate laws governing the production and 
growth of the condensation nuclei (see 9 3) indicate that homogeneous nucleation 
is dominated by an exponential dependence on the activation function B. This 
function is proportional to the local activation energy and its variation with 
distance x through the nozzle is shown in figure 3. For small K ,  the production 
rate exhibits a marked peak near the minimum at xk which provides a satis- 
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FIGURE 2 .  The nucleation parameter for steam, argon and nitrogen. 

factory definition for the onset point (3 4). The limit h -+ co, K -+ 0 is now replaced 

It is important to note that, even if the local activation energy is evaluated 
completely from the supersaturated solution, the corresponding function B,, 
which is a lower bound for B, still has a minimum at some point xm 2 xk (see 
figure 3). When x k  is not close to xm it is shown in $55-7 that the final collapse of 

byK+O, xk-xC = O(1). 

38-2 
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FIGURE 3. Frozen and local behaviour of the activation function B. 

the supersaturated state is governed by a condensation shock. More precisely, 
the collapse is found to have a two-layer structure in which the first layer is 
dominated by droplet production. Major growth occurs in the second layer or 
shock zone where nucleation is no longer important. Both layers are narrow in 
extent but the area variation cannot be neglected in the nucleation zone. Within 
the nucleation region, however, the rate equation can be reduced to a parameter- 
free similarity form ($5). This scaling law should be of practical interest. 

As xk+xm, or equivalently as h decreases at fixed K ,  the collapse becomes less 
sharp. In  this case the final approach towards a saturated state is not necessarily 
described by a condensation shock. Simplifications do still occur within the 
nucleation zone, where it is now found that the rate equation can be reduced to 
a form depending on only a single parameter. A detailed discussion of the struc- 
ture is given in $0 8 and 9. 

Although the droplet growth law ($3)  implies that the downstream limit of 
the shock solution should be defhed by a saturated state, it is well known that 
such states are not always admissible since the heat release due to condensation 
can lead to thermal choking (Wegener & Mack 1958). A combined analysis of 
the growth law and of the shock relations ($7 )  shows that choking is possible only 
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if the initial saturation point occurs upstream of the nozzle throat. This Iatter 
condition is apparently not well known. 

The principal results obtained in this paper are summarized in 3 10. 

2. Quasi-one-dimensional flows 
The general problem considered concerns nozzle flows of a mixture of a con- 

densable vapour and an inert carrier gas. Reservoir conditions are such that the 
initial point in the vapour pressuretemperature (pi, 5"') plane lies beneath the 
co-existence line (see figure 1). Only those flows for which the initial isentrope 
crosses the co-existence line are of interest. Downstream of this intersection local 
equilibrium conditions correspond to saturated states which are governed by 
the Clausius-Clapeyron equation 

dpJdT' = L'ph/T', (2.1) 

where the volume occupied by the liquid phase has been neglected. pi  is the 
saturated vapour pressure, ph is the vapour density and L' is the latent heat of 
vaporization. A brief description of the equilibrium solution is given in appendix 
B. Since the condensation (nucleation) rate is finite, the solution, in general, 
does not follow the saturation line and a region of supersaturated flow exists. 
It is the prediction and the structure of the collapse of this supersaturated state 
which is the central concern of the present paper. 

The conservation laws for quasi-one-dimensional flows are taken to have the 
standard form given in Wegener & Mack (1958), where a detailed discussion of 
the relevant assumptions can be found. Treating the vapour phase of each com- 
ponent of the mixture as a perfect gas, balance of mass, momentum and energy 
gives ~ u A  = m, (2.2) 

puduldx = - dp/dx, (2.3) 

= cPo To, (2.4) cp0 T -+ iu2 - Lg = cp0 f 

where the suffix 0 corresponds to reservoir conditions and the suffix c to  condi- 
tions at the saturation point. p is the density of the mixture, p is the pressure, 
T is the temperature, g is a weighted mass fraction, cp is the specific heat at  
constant pressure for the mixture, L is the latent heat, x measures distance 
through the nozzle (x = 0 at the throat), A(x) is the local cross-sectional area and 
m is the mass flow rate. All dependent variables are now normalized with respect 
to conditions at  the saturation point; x is normalized with respect to the nozzle 
throat height (see appendix A). At x = x,, p = p = T = 1 and g = 0. 

The weighted mass fraction g is related to the actual mass fraction g' by 

g = (pdpt)) Hg'J (2.5) 

where H = p, LJ92Ti. (2 .6 )  

W is the gas constant, p o  is the molecular weight of the mixture in the reservoir 
and pLv is the molecular weight of the vapour. In terms of these variables the 
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equation of state for the mixture becomes 

P. A. Blythe and G. J .  Shih 

p = p( 1 - H-lg) T. (2.7) 

Relationships between the partial pressures etc. are listed in appendix A. 
From (2.1), assuming L = L(T) (see 3 3), it follows that the normalized satura- 

tion pressure is given by T 

1 
p ,  = exp [IIS ~ ( 7 )  7 - z c ~ T ] ,  (2.8a) 

which simplifies to p ,  =exp[-H(T-l-l)] (2.8b) 

if L is constant. Similarly, the saturation temperature T, corresponding to the 
local vapour pressure is defined implicitly from (2.8) by 

L(T) T - ~ ~ T  = H-l In ( p J ,  

with a subsequent simplification if L is constant. 

(2.9) 

3. The rate equation 
For homogeneous nucleation, condensation nuclei of critical size are formed 

by random molecular processes. If mi(x’, 6’) is the mass a t  x’ of a droplet of radius 
r’ which originated at g’ and if J ’ ( c )  is the rate of production per unit volume of 
droplets of critical size then 

g’ = - Jx’ mi(%’, 5‘) J ’ ( f )  A‘([‘) d6’. 
m’ --a, 

The droplet growth rate, which determines mi, depends on the ratio of the 
droplet size to the mean free path. Operating conditions in supersonic wind 
tunnels are usually such that a molecular growth law is appropriate. Strictly i t  
is necessary to consider both the mass and the energy balance for the droplet 
but it has been found (Buhler 1952; Hill 1966) that in many cases the energy 
balance can be replaced by a quasi-equilibrium assumption in which the droplef 
temperature TD is defined in terms of local conditions. The approximation that 
TD is also independent of the droplet size is often made (Hill 1966) and will be 
adopted here. Consequently, in dimensionless form, 

= TD(Pv> T, 91, (3.2) 

which for a pure vapour reduces to TD = TD(pu,T). Expressions for TD in the 
case of gas-vapour mixtures can be obtained from the discussion in Hill (1966). 
No particular choice of the function TD(pv, T, g) is necessary for the generaE 
analysis given in this paper but it is important to note that 011 an equilibrium 
curve T = TD = T, (3.3) 

for all g. T,  is the saturation temperature defined by (2.9). Consistent with the 
size-independent assumption on TD, it is necessary to  take 

L = L(T), (3.4) 



Condensation. shocks in  nozzle Jzou~s 599 

and to neglect any dependence on the droplet radius. Detailed calculations can 
be found in Wegener & Parlange (1967). 

In  normalized form, the molecular growth law for the droplet radius r is 

d q d x  = W p , ,  T, 9)  [TD- TI, (3.5) 

where h is the growth or rate parameter, which corresponds to a characteristic 
ratio of a flow time to a droplet growth time (appendix A). This paper is con- 
cerned throughout with the limit h & I. The rate function F is inversely propor- 
tional to the speed u(T,g) [see (2.4)]. Other than the requirement that F be 
differentiable with respect to any of its arguments no detailed assumptions on 
its general behaviour are necessary. At the saturation point F ( l ,  1, 0) = 1. 
From the size-independent assumption it follows that the right-hand side of (5.3) 
is defined solely in terms of the thermodynamic variables pv ,  T and g. 

Various expressions for the droplet production rate J’ have been derived. 
Reviews of current theories can be found in Wegener (1969) and Andres (1969). 
These theories all lead to expressions of the form 

J‘ = A5”X(pv, T )  exp { - K-lB(p,, T ) )  = X’J(p,, T; K ) ,  (3-6) 

where B is proportional to the activation energy associated with the formation 
of droplets of criticalsize. K is referred to as the nucleation parameter. It is 
defined implicitly by the particular choice of the function B(pt., T). Classical 
theories predict that B = g ( p v ,  T )  (Ins)-2, (3.7) 

where s = PDIP, (3.8) 

is the saturation ratio and the normalization is such that g ( 1 , l )  = 1. Some 
calculations for K were shown in figure 2.  The thermodynamic data were ob- 
tained from the In%ernational Critical Tables and from Wegener (1969); the 
nucleation rate was defined by the result due to Volmer (1939). Similar results, 
in which K < 1 over a broad range of reservoir conditions, appear to hold for 
many other vapours of practical interest. Only flows with K < 1 are considered 
in this paper. 

Although there has been some discussion concerning the pre-exponential 
factor in (3.6) (Lothe & Pound 1962; Andres 1969) this question will not affect 
the qualitative conclusions of the present analysis since no specific choice of 
the function X(pt,, T) need be made. At the saturation point X ( 1 , l )  = 1. 

Finally, using these normalized variables, the rate equation (3.1) becomes 

(3.10) 

It has been assumed that the initial (critical) droplet radius can be neglected; 
this assumption is consistent with the size-independent approximation made 
earlier. Some numerical calculations can be found in Wegener & Mack (1958). 
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4. Initial growth 
Near the saturation point xc, where B is unbounded, g is exponentially small. 

If K < 1 it  can be expected that a supersaturated state will persist for some dis- 
tance downstream of x, even though the growth parameter h $ 1. Here the 
double limit h -+ co, K -+ 0 is ordered such that the collapse of the supersaturated 
state occurs at  a k i t e  distance downstream of x,. Over the interval x, > x 2 x,, 
where x, is the effective onset point [see (4.10)], the first approximation to the 
solution is governed by the frozen relations (g = 0) 

with Y = c,,/(cpo- 1). (4.2) 

This system is completed by the continuity equation (3.2). If the saturation 
point x, lies downstream of the nozzle throat the mass flow rate is defined by 
the condensate-free value 

(4.3) 

Even if x, lies upstream of the throat, the mass flow is still determined to  a first 
approximation by (4.3) if the onset point xk occurs downstream of the throat. 
The analysis in this paper is initially restricted to flows which are supersonic 
at x,. 

From (3.6) and (3.9) it  can be shown that the initial growth of the condensate 
mass fraction is given by 

where the suffix f denotes evaluation from the condensate-free solution. It is 
important to observe that in (4.4) the error term, which represents the coupling 
between the rate and flow equations, is O(g /K) .  

The growth defined by (4.4) depends strongly on the behaviour of the function 
B,(x). Standard expressions for the activation energy lead to  curves of the type 
that were shown in figure 3. In  particular, (3.7) implies that as x-tx,  

(4.5) 

apart from some constant factor. As x --f co ( A  -+ co) the classical theory (Volmer 

Bf N A4(Y--1), (4.6) 
1939) yields 

again apart from a constant factor. For the general analysis, with xk > xc, it is 
not necessary to use the specific results (4.5) and (4.6), but it is required that B, 
have the characteristic shape given in figure 3 with a single minimum at x = x,. 

As K -+ 0 the integrand in (4.4) is of steepest-descent type with a turning point 
at x,. However, the error term in (4.4) can become important upstream of xm. 
In  this case the coupling limits the droplet production and leads to a local mini- 
mum of the activation function B(p*, T )  (see figure 3). Although g is still small in 
this region, it is found that the coupled turning point is closely associated with 
the collapse point xk ( 3  5). It is necessary to distinguish between flows for which 

B, N (x - x y ,  
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xk lies upstream of x,  and flows for which xk - x,. Only the former case is con- 
sidered in this section. Results for the limit xk - x, are discussed in $58 and 9. 

Neglecting the factor O(g/K), it can be shown from (4.4) that upstream of x,  

g N 6h3K4Q~(x)Xf (x)A(x)  (dBf/dx)-4exp{-K-1B,(x)}[1 +O(K)],  (4.7) 

where 

provided that 

Clearly, from (4.4), this initial growth law will remain valid, x < x,, only if 
g = o(K) .  If h is sufficiently large it can be seen that this restriction will be vio- 
lated at a finite distance upstream of xm. The point xk characterizing the position 
of this onset region, where the coupling between the rate and flow equation can 
no longer be neglected, is defined implicitly by 

g(Xk)/K N D(Xk) = 6h3K3Q~~: ,Ak(dBf /dx ) ,4exp{  -X-'Bk} = 1 (4.10) 

with f i k  = Qf(xk), etc. 
Onset criteria have been discussed extensively in the literature (Wegener 

1969; Wegener & Mack 1958) and it is of interest to note that Oswatitsch (1941), 
using qualitative arguments, obtained a result similar in form to (4.10). In  addi- 
gion to the exponential factor, Oswatitsch's criterion included the term (dT/dx)-4. 
A similar term (dBf/dx)-4 arises in (4.10) (see also Daum & Gyarmathy 1968). 
The point xk,  defined by (4.10), is probably best referred to as a relative onset 
point since the critical value of g is measured with respect to the parameter K .  
Near xk the flow variables are influenced, even t o  a first approximation, by the 
heat release due to condensation. Conventional definitions of the onset point 
often correspond to the use of some absolute value of the condensation fraction 
or, at least, to the use of some practical indication, such as static pressure 
measurements, of the departure from an isentropic state. Analysis of the sub- 
sequent growth of the mass fraction ($$5 and 6) shows that in the present limit 
these definitions all predict collapse points which lie close to that given by (4.10). 

From (4.10) the parameters h and K can now be replaced by xk and K .  The 
appropriate limit is defined by K + 0 with xk ( > x,) = O(1). For given reservoir 
conditions the nucleation parameter K is fixed but the growth parameter h 
depends on the nozzle geometry. Although in general xk < x,, flows in which 
x, x, can arise from practical situations: this limit will always ultimately 
occur as h decreases (rapid expansions) and is discussed in $9 8 and 9. Conversely, 
for very slow expansions (h+oo) xk+xc. A brief discussion of this latter limit, 
in which the bulk of the collapse occurs close to  the saturation point, is given at  
the end of $ 7  for K < 1 (see also Shih 1972). Experimental data confirm that 
both situations, i.e. xk > x, and xk - x,, are of practical significance. 

5. The nucleation zone 

the neighbourhood of xk are 
If xk does not lie close to either x, or x,, appropriate asymptotic expansions in 

(5.1) 

(5.2) 

9 = K91($1) + . * . )  
T = Tk +KT1($,)+ ..., 
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et c., where 91 = K-l(x-xk). (5.3)  
These expanslons are compatible with the limiting behaviour, z + x k ,  of the 
initial growth law (4.7). Substitution into the conservation equations (2.2)-(2.4), 
together with the equation of state (2.7), gives 

( M i  - 1)  TJT, = - (y  - 1) &!iAlk$l +(y - 1) { M i  - y-’ - H i 1 M 2  kILkg11Tk3 (5*4) 

where 

Hk = HLklTk = pt,LA/9Ti, (5 .6 )  

and 417, ( > 1) is the Mach number based on the frozen sound speed. Similar 
results hold for the remaining dependent variables. The temperature variation 
is now influenced to first order by the heat release due to condensation: the 
terms on the right-hand side of (5.4) are associated respectively with the tem- 
perature decrease due to the nozzle expansion and with the temperature increase 
due to the onset of condensation. 

In  this region the rate equation (3.9) becomes 

(5.7) y 1 - - 1 4  - 6’ 1”’ (~1-@1)3exp{a~1-bg1(llr1))dlC.1~ 
- w  

where use has been made of (5.4) and of the corresponding results for the other 
dependent variables. The constants a and b are defined by 

with 

(5.9) 

(5.10) 

Since dB#x < 0 ( x  < x,), a is positive. For standard models (Andres 1969) 
aB/apv < 0 and it follows, for i& > 1, that b is also positive. 

The scaling transformation 

g1 = b-lo, q51 = a-l$, (5.12) 

together with the change of origin 

$= 4-lnb, (5.13) 

reduces (5.7) to the canonical parameter-free form 

(5.14) 

From (5.14) it appears that within this zone both droplet production and droplet 
growth are important, though the characteristic feature of the region is the rapid 
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FIGURE 4. The droplet production rate. FIGURE 5 .  The droplet number density. 
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@ 
FIGURE 6. Droplet growth. -, exact solution; - - - - , asymptotic solution (5.18). 

increase, and subsequent decay, of the local nucleation rate. This production 
term is represented by j ( + )  = exp {$ - p(+)>, (5.15) 
and a corresponding droplet number density is defined by 

#(+) = j ( s ) d s .  (5.16) 

A modified predictor-corrector technique was used to obtain the numerical 
solution of (5.14). The results are shown in figures 4 6 .  From figure 4 it can be 

- W  
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a3 a2 a1 a0 

0.1883 0.0740 0.3624 0.8566 

TABLE 1. The coefficients a, 

seen that the nucleation rate decays rapidly downstream of the present zone 
and is essentially zero for q5 > 2 .  An appropriate measure of the total number of 

(5.17) 
droplets produced is (figure 5)  a(m) = 1.130. 

@ - a343 + a2gP +a1$ + a, + o( l ) ,  

As q5 -+ co, (5.14) implies that 

(5.18) 

where the coefficients a,, which are defined by 

are listed in table 1. Figure 6 shows the solution for the mass fraction 6 together 
with the asymptotic law (5.18). This cubic growth, which corresponds to the 
droplet radius increasing linearly with distance, obviously cannot persist and 
must eventially be limited by a return towards a saturated state. 

6. Droplet growth 
Downstream of the nucleation zone the production rate is exponentially 

small and the condensation process is dominated by droplet growth. Before 
discussing the detailed structure of the growth region it is convenient to rewrite 
the basic rate equation (3.9) in an alternative form using a normalized droplet 
radius 

where Q(x; K )  = P(T,- T). (6.2) 

&k = xk- KU-' In b, (6.3) 

The growth of R is measured from 

which corresponds to the origin defined by the transformation (5.13). From (6.1), 
(3.9) and (3.10) it follows that 

a4 3 

6K3 r = ~  
g(x; K )  = - (- l)r3Cr[R(x; K ) ] 3 - r I r ( ~ ;  K ) ,  

with 

Outside the nucleation zone the integrand in (6.5) is exponentially small. It is 
straightforward to show from the solution given in 3 5 that for x > xk (z - xk >> K )  

5 ( x ;  K )  = &(a; a, (6.6) 
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neglecting exponentially small terms. Further 

I,(co; K )  = Ka-lb-l (6-7) 
- m  

Substitution into (6.4) gives 

with 

g ( X ; K )  = a K -  - (-) [ d 3 R 3 + E 4 B 2 +  (g)'4&!+ (I()'dO] (6.8) b a  a a 

where a, is defined by (5.19) (see table 1). Equation (6.8) is an expansion in terms 
of the local radius and should be compared with (5.18), which is the initial form 
of this expansion. It is apparent, at least for the leading terms, that in the growth 
region the mass fraction is independent of the precise origin of the nuclei. 

The growth law (6.8) is appropriate downstream of the production zone. 
Direct inspection of the equations suggests that the nucleation solution will fail 
when g = O(1) or, equivalently, when x-xk = O(KQ). (The width of the nuclea- 
tion zone is O(K).) Within the growth region suitable independent and dependent 
variables are 

x = E-1K-Q(x- &,J, W(x; X) = l-lK-Q(X; K ) ,  (6.10) 

where a(,; K )  = s," Q(s; K )  ds, (6.11) 

with W ( x ; K )  = Q;l!2(x;K). (6.12) 

Inclusion of the factor I = a-l(ba;l)$ (6.13) 

in (6.10) leads to some simplification in the subsequent relationships [see (6.15)]. 
The remaining dependent variables are defined by 

g(x; K )  = S(x; K ) ,  T(x;  K )  = m; K ) ,  (6.14) 

etc. In  the growth region, where x = 0(1) ,  barred variables are O(1). 

Substitution in (6.8) gives 

g ( x ;  K )  = R3+a2a,-8(Kb-l)f~2+a,a,3(Kb-1)PR+ O(K). (6.15) 

Since the a, are known (table 1) it is clear that, correct to O(Kf) ,  g depends only 
on R and the single parameter Kb-l. From (6.11) the integral form of the rate 
equation is now equivalent to the first-order differential equation 

d R / d x  = Q(x; K ) ,  (6.16) 

with B(0;K)  = 0. (6.17) 

In general, a = Q(Ipv ,  F ,  S). Ipu and F are determined as functions of S from the 
local solution of the conservation equations ( 3  7). 

Appropriate asymptotic expansions in the growth region are of the form 

B(x;K) = So(X)+K+S1(X)+..., (6.18) 
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etc. It follows from (6.10), however, that the effect of the local area variation is 
O(K+). Consequently, the conservation relations reduce to the standard one- 
dimensional form even if terms O(Kf) are included ($7).  Such terms are easily 
retained in the analysis by introducing the transformation 

B(x; K )  = R(x; K )  + gu,a,+(Kb-l)f. (6.19) 

Equation (6.15) then becomes 

g(x; K )  = X3(x; K )  + O(K+), (6.20) 

with, from (6.16), dEJ/dX = G(x;  K ) ,  (6.21) 

where, from (6.17), 

(6.22) 
correct to O(Kf ) .  

From the results of this section, and those of 95, it can be seen that the col- 
lapse of the supersaturated state is governed by two distinct regions, both of 
which lie close to the onset point xk. The nucleation zone, whose width is O(K), 
acts as a precursor for the subsequent growth zone of width O(KP). In  this latter 
zone the rate equation reduces to the simple relaxation form (6.21). The two- 
zone structure is in qualitative agreement with much of the experimental data 
and with the results of some numerical solutions of the full equations (see, for 
example, Clark 1963; Griffin & Sherman 1965; Wegener, CIumpner & Wu 1972). 
A detailed analysis of the growth region is given in 3 7. 

S(0; K )  = &~,a$(Kb-l)* % 0*2253(Kb-l)+, 

7. Condensation shocks 

shows that within the growth zone, correct to O(K*), 
Substitution of the expansion (6.14) into the conservation relations (2.2)-(2.4) 

(7.1) i 
Tz = PkUk, 

j3 +pu2 = p ,  +pku;, 

GPO + &?i2 - zg = Cpo Tk + +U,& 

where the right-hand side follows from matching with the upstream nucleation 
solution. These one-dimensional relations (the local area variation is O(K%)) 
govern the structure of what is usually termed a condensation shock (Wegener 
& Mack 1958): the dominant physical mechanism is the heat release due to 
condensation. This system is completed by the rate law (6.21), together with 
(6.20), and the equation of state 

p = p (  1 - H-lg) F.  (7.2) 

Most models of the shock structure neglect the temperature variation of the 
latent heat ( L  = 1). It is often further assumed that H $ 1. In  this latter limit 
the equation of state reduces to the perfect-gas law 

- 
p = PT. (7.3) 

The conservation relations remain unchanged in form and, with = 1, are 
equivalent to the classical Rayleigh-line relations governing the flow of a perfect 
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X+d 

FIGURE 7. Particular examples for the shock structure. 
T - 2 ,  w0 = 1, = 1.4, H = 20. 0 -  

gas with heat addition (Shapiro 1953). However, omission of the term H-lS in 
(7.2) can lead to significant errors at  high Mach numbers. It will be retained in 
the present discussion. 

Formal integration of the rate equation (6.21) gives 

For a given growth function fi is evaluated as a function of S, and hence of g ,  
from the solution of the conservation relations. The constant d is determined 
from the initial condition (6.22). It follows that, correct to O(K*), 

d = +n,agt(Kb-l)*. (7.5) 

Some calculations for a simple model are shown in figure 7, where it was assumed 
that TD = T, (Oswatitsch 1942; Hill 1966) and that L = 1. These calculations 
were carried out for a pure vapour (w,, = I )  using the growth function 

(Wegener & Mack 1958). 
For the examples shown in figure 7 the downstream limit of the shock solution 

corresponds to a saturated state. It might appear from the rate equation that 
the end state will always be defined by a saturated equilibrium point at which 
T = TD = T,. However, it  is well known that for flows of this type there is a 
critical heat addition above which the flow is thermally choked. At choking, the 

P = u ~ u - ~ ~ , T *  (7.6) 



608 P. A.  Blythe and C. J .  Shih 

local Mach number based on the frozen sound speed af is unity. af is defined by 

Although it is important to understand the conditions under which choking 
will occur upstream of the equilibrium state, surprisingly little analytical work 
appears to have been done on this problem. Most standard treatments use the 
classical shock equations (H  9 1) to obtain an upper bound on the mass fraction 
(heat addition) but do this independently of the saturation constraint. A dis- 
cussion of the choking and saturation conditions is given in appendix C for flows 
in which the latent heat is constant. Using this assumption (L  = 1) it  is possible 
to  obtain explicit solutions of the conservation relations in terms of the mass 
fraction S. The analysis below is restricted to this case. These solutions can be 

and (7.10) 

Here C, = (y+l)---  y - 1 H 7  2Y To '2= ( '+yZ To) a9 To C, = (7 -1 )  (2) , (7.11) 
2 

and To = [l+$(y-l)ME]Tk = l+&(y-l)HE. (7.12) 

(7.13) 

Initially 9 > 0. Choking corresponds to = 0. It is shown in appendix C 

To > $(y+ I ) ,  (7.14a) 

or, equivalently, if M,> 1.  (7.14 b )  

Conversely, choked flows will arise only for 

that a saturated equilibrium state is always achieved upstream of choking if 

M, < 1 (To < $(y +l)). (7.15) 

This criterion does not appear to have been previously deduced by analytical 
arguments but it is implicit in some experimental studies of choking phenomena 
(see Pouring 1965). It should be stressed that (7.15) is a necessary rather than a 
sufficient condition. Choking will occur only for M, < 1 and Mk- 1 sufficiently 
small. (In the preceding discussion Mk > 1.) Some detailed numerical calculations 
are presented in figures 8-10. For given H and y these figures show the locus of 
the choking and equilibrium points in the S, 

As implied above, the shock relations simplify considerably for H 3 1 and 
reduce to the classical Rayleigh-line relations. In  particular 

C -+ (y + 1) STgl as H + co. (7.16) 

However, it is easily seen from (7.10) and (7.11) that difficulties arise with the 
large H approximation when To = O ( H ) ,  for which i& > M, B 1. It should also 

plane for a pure vapour. 
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FIGURE 8. The shock solution for To < j(r + 1). Choking is possible for sufficiently small 
Mk. Shock paths originate on g = 0. To = 1.1, o0 = 1 ,  = 1.4, H = 20. - - - -, shock 
path; - , local saturation limit ; - - -, choking line. 

!ii 

FIGURE 9. The shock solution for To = $(y+ 1). The choking and saturation curves inter- 
sect only for &fk = 1 (?j = 0, !? = 1). Shock paths originate on s = 0. To = 1-2, o0 = 1, 
y = 1.4, H = 20. - - - -, shock path; __ , local saturation limit; - - -, choking line. 

be noted from (7.11) that for To sufficiently large C, < 0. In  this case it follows 
from (7.10) that C < 0 and, irrespective of the saturation constraint, the flow 
will not choke for any value of S. 

If choking does occur, which requires at least that C, > 0, the cubic defined by 
9 = 0 has two positive roots for the limiting value of the mass fraction. The 
analysis given here considered only the smaller of these two roots. It is not clear 
whether the larger root corresponds to any real physical situation. 

As the onset point moves towards the initial saturation point, the shock 
strength decreases. Flows in which xk - xc = o( 1) arise, at fixed K, for sufficiently 
large values of the growth parameter A. It is necessary that 

Kln (A/K) B 1. 
39 

(7 .17)  
F L M  76 
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!ii 

FIGURE 10. The shock solution for To > ;Z(y + 1) .  The initial point on the choking line is 
defined by pk = 1 (Mk > 1). Shock paths originate on S = 0. To = 1.5, wo = 1, y = 1.4, 
H = 20. - - - -, shock path; -, local saturation limit; - - -, choking line. 

If, however, K < 1 the structure of the nucleation zone is still governed by the 
analysis described in $5.  (Even if K is not small the theory remains valid for 
h R.) From (4.5) it follows that the width of the nucleation zone is now 

Downstream of this zone the solution corresponds to a weak condensation 
o[K(xk -  xc)21* 

shock. Retaining only the dominant terms it can be shown that, as xk+ zc, 

n u 1 -pg, 
where 

(7.18) 

(y-l-H-ly)ME(dA/dx),(x,-x,)p = (y-l)(M2,-y-1)-2H-l(y- 1)ME 
+H-yyM:+w;l(I -w,)p~lp~(M;-  1)). 

(7.19) 

0 = p-'gW, p = bTcP-'pu,, f l  = p-*Sw (7.20) 

and x = p-+xw. (7.21) 

Here bTc is given by (5.10) with Mk replaced by M,, etc. In terms of these variables, 
omitting the suffix w, (6.21) reduces to  

Suitable local dependent and independent variables can be defined by 

with 

(7.22) 

(7.23) 

Subject to the initial condition S(0) = 0, the solution of (7.22) can be written 

(7.24) 

This function, with g = 83, is shown in figure 11. 
It was assumed earlier that onset occurred downstream of the frozen sonic 

point although no assumptions were made concerning the position of x,. As 



Condensation shocks in nozzle flows 611 
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FIGURE 11. Weak shock structure. 

xk -+ x, it  is clearly desirable, if subsonic saturation points are to be permitted, 
to remove this limitation. Provided that the mass flow is redefined by its equili- 
brium value, it  is not difficult to show that the weak shock analysis is also valid 
for u, < a,,, where a, is the saturated equilibrium sound speed. The analysis is 
not valid in the transonic regime 

arc 2 u, 2 am,  (7.25) 

where ,8 < 0. Similar comments apply to the general case, x, -x, = O(1). Many 
of the results derived earlier will remain valid for uk < am if the mass flow is 
suitably modified and if b > 0 [see (5.9)]. 

From (7.23) it can be seen that figure 11 also defines the temperature distri- 
bution for weak shocks. Outside the interval (7.25), b,, > 0 except for 

> u, > aTc, (7.26) 

where ap is the isothermal sound speed. Within this latter range it appears from 
(7.20) that the heat release due to condensation will decrease the local tempera- 
ture (Shapiro 1953). Although, in addition, b ,  < 0 over the transonic range 
(7.25), no conclusions should be drawn for that interval since the present theory 
is not applicable. 

8. Collapse structure, x, - xk = o( 1) 

In $95-7 it  was assumed that the onset point did not lie close to the frozen 
turning point x, (see figure 3). From (4.9) the structure of the onset region must 
be modified when 

Consistent with (S. l ) ,  it is then convenient to introduce the variable 

x,-xk = O(K4). (8.1) 

= K-i(x-x,). (8.2) 
39-2 
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The initial growth law (4.4), neglecting the error term O(g/K) ,  becomes 
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g ~ ~ K Z Q ~ S , , ~ , ~ ~ P ( - ~ - ' B , } S  51 ( & - - ~ ~ ) ~ e x p [ -  $BAz;]dz1[1 +O(Kj)],  

--m 

(8.3) 

where B, = B,(x,), B A  = (dzBf/dX2),, (8.4) 

D, = h3KQ:n;T;,A,exp{ -K-IB,}. (8 .5 )  

etc. 
Corresponding to the definition (4.10), it is appropriate to write 

For the analysis given earlier, with B; = O ( l ) ,  D, B 1. Here Bi = O(K4) and 
D, = O(1). Even though Ixk-x,I = o(l) ,  the restriction D,, = O(1) still implies 
that h % 1. From (8.5) and (8.3) the initial growth is apparently given by 

but clearly the error term O(g/K) [see (4.4)] cannot be neglected for finite Q. 
Equation (8.6) is valid only as -+ - 00. 

The correct expansion for l1 = O(1) has the form 

(8.7) 1 g(z;K)  = 3([1;K)  = Kg2(Cl)+ ..., 
T ( x ; K )  = F(<l;K) = T , + K B ~ ( ~ 1 ) + K ~ 2 ( < 1 ) + . . . ,  

with similar results for the remaining dependent variables. Again T, = 5 ( x m ) ,  
etc. It is easily shown that the terms O(K4) are defined by the frozen solution 
(g  E 0) ;  any departure from the supersaturated state is associated with the 
terms O(K). In  particular, it follows from the conservation equations ($2) that 

( M L -  1 ) q  = & ( M & - l ) T h < ; + ( ~ - l )  [Mk-y-l-H~'Mk]L,G;;.  (8.8) 

Equation (8.8) should be compared with (5.4), which holds when D, 9 1. 
Substitution in the rate equation (3.9) gives 

A A 

(6 -  . z ) ~  exp [ - z2 - 9 ( z ;  v)] dz, (8.9) 

where 

and 

(8.10) 

(8.11) 

In  contrast with (5.14), whichis valid for D, B 1, thereducednucleation equation 
now does depend on the single parameter v. 

Solutions for the droplet production rate 

4c;  y )  = exp c - CZ - &5; v)l, (8.12) 

for the normalized droplet number density 

5 A  
8(<; v) = / J ( z ;  v)dz, (8.13) 

and for the asymptotic level ~ ( o o ;  v), which is proportional to the total number 

--m 
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FIGURE 12. The droplet production rate, X ? , ~ - X ~  = o(1). 
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FIGURE 13. Droplet number density, z,--zk = o(1). 

of nuclei produced, are shown in figures 12-14. The solution for the mass fraction 
9(<; v) is given in figure 15. From (8.9) it follows that as f;+m the mass fraction 
is again governed by a cubic law 

@ ( g ; v )  a 3 ( V ) ~ 3 + . . . + a , ( v ) + o ( 1 ) ,  (8.14) 

A 
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FIGURE 14. The asymptotic droplet number, zm--2k = o(1). 

1 .o r 

0.8 

0.6 

0.2 

0 

FIGURE 15. Condensate mass fraction, 2, - xg = o( 1). 
---- , asymptotic solution (8.14). 
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FIGURE 16. The coefficients a,(v). a,* = v-la,/C,. 

co 

with a,(v) = 3 ~ ,  v j ( - ~ 3 - 7  exp [ - 62-  +(c; v)] dc. (8.15) 

Note that 8(m; v) = v-la3(v). (8.16) 

The coefficients a,(v) are shown in figure 16. 

fails when g = O(1) or, from (8.2) and (8.14), when 

-W 

As in $5,  the growth defined by (8.14) cannot persist indefinitely. This solution 

x--x,  = O(K4). (8.17) 

Within this latter zone the dominant approximation is governed by the shock 
relations discussed in $7. Here, however, the error term due to the area variation 
is O(K4). 

Similar results to those outlined in 5 6 can be obtained for the shock structure. 

= (b-1a3)+ (4Bk)i K-qx - xm), (8.18) 
In terms of 

the dependent variables have expansions 

g(z; K )  = ij(2; K )  = s"(i) +O(Ki),  (8.19) 

etc. The constant factor in (8.18) is introduced for algebraic convenience.f,It 
follows that the growth law reduces to 

dSldX; = Q J ) ,  (8.20) 

where ij = S3, (8.21) 

and = Q,lQ(x; K )  (8.22) 

is evaluated as a function of ij(8) from the shock relations. Matching with the 
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nucleation solution implies that 
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(8.23) 

where the error term, which corresponds to the shock thickness or area variation, 
is O(K+).  Since, at  fixed K ,  xk + x, as h decreases this increase in shock thickness 
could have been expected. 

9. Weak coupling, Qrh = o(1) 

The growth laws discussed in $ 8 for D, = O( 1) do not necessarily remain valid 
as Dm + 0. Flows in which D, = o( 1 )  arise, at  fixed K ,  as A decreases. From (8.6) 
it can be seen that g = O(KD,) in the nucleation zone and, if 0, = o( l ) ,  the 
coupling term O(g /K)  remains small throughout this region. Droplet production 
is then governed entirely by the frozen approximation (g = 0 )  to the nucleation 
rate J .  In this limit, which corresponds to 1' + 0, (8.6) implies that 

g - 47r4(B32KDrn[<3+ 2 c  +o(l)]  (9.1) 

as <+a. The validity of (9.1) is limited either by droplet growth or by the local 
area increase. As before, droplet growth is important when g = O(l) ,  which, 

(9.2) from (9.1), occurs when 

or equivalently, from (8.2),  when 

c = O(KD,,)-*, 

x-x, = O(KQD,4). (9.3) 

KD9;2 = o(1). (9.4) 

Apparently the area variation will remain small if 

Downstream of x, the nucleation rate is exponentially small. Using arguments 
similar to those given in $6, the local growth law can be written as 

where 

and R = 0 on x = xnz. Only the dominant terms are retained in (9.5) and (9.6). 
The constant factor in (9.6) follows from matching with the nucleation solution 
(9.1). If  the restriction (9.5) holds, a suitable local length scale, downstream of 
xm, is defined by 

(9.7) x - 5, = (27r-4 (B; K)+ D,*,& 

with R = ( 2 7 ~ ~ 4  (BkK)+ D;*II. (9.8) 

This scaling corresponds to the 1' = 0 limit of the transformation given in $8. 
x" again satisfies (8.20) with 0 defined by the one-dimensional shock relations. 
Here, however, the shock thickness is O(K*D;f) and the collapse is considerably 
more diffuse. 

For even smaller values of D,, such that 

D,K-i = O(1), (9.9) 
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it is apparent from (9.3) that  the validity of the growth law (9.1) will also be 
limited by the area variation. Equations (9.5) and (9.6) still hold downstream of 
x,, but now g ,  R and x - x, are all O( 1) and Q must be evaluated using the full 
conservation equations including the local area variation. I n  this limit, with 
D, = O(K$),  the collapse of the supersaturated state is no longer shock-like. 

Finally, as h decreases further, flows in which D, = o(K4) can be obtained. 
Equations (9.5) and (9.6) then imply that g will remain small for x-xm= O(1). 
Droplet growth, even downstream of x,, can be computed from the frozen 
approximation to Q. This near-frozen behaviour may ultimately collapse, as 
x+m, depending on the form of the growth function and on the asymptotic 
nozzle shape. No discussion of this limit is given here but related problems have 
been discussed in Blythe (1967) and Petty (1968). 

10. Discussion 
In flows with K < 1 it can be expected that significant nucleation will not 

occur for some distance downstream of the initial saturation point x,. If, further, 
h 1 it can also be expected that any subsequent growth will be rapid. These 
conditions, K < I and h B I, are certainly necessary for the existence of conden- 
sation shocks, but they are by no means sufficient. It was however shown in 3 7 
that, if the onset occurs upstream of x,, then the eventual collapse is governed 
by a condensation shock. The end state downstream of the shock corresponds 
to  saturation if the flow is supersonic a t  xc: choking is possible only for ill, < I. 

It was found that the collapse of the supersaturated region was, in general, 
governed by a two-layer structure in which the nucleation zone ( $ 5 )  acts as a 
precursor for the subsequent growth or shock zone. Within the shock zone drop- 
let production is exponentially small. Of particular interest, with respect to the 
collapse structure, is the solution in the nucleation zone. When xk does not lie 
close to xn, it was shown in $ 5  that  the governing integral equation can be re- 
duced to a parameter-free form. Further, even as xk-+xm, it was noted in $8 
that the corresponding integral equation still depends only on the single para- 
meter v. Although no attempt is made in the present paper it would certainly 
be of interest to  use the transformations discussed in $ $ 5  and 8 to analyse 
available data for the nucleation rate J .  Possibly, because of uncertainties in the 
experimental results, the simplest way of testing these scaling laws would be to 
use numerical solutions of the full equations. 

As h decreases, at  fixed K ,  xk -+ x,. The analysis given in $$8 and 9 shows that 
the shock zone broadens significantly in this limit and, even though h B I, the 
collapse is no longer shock-like when 

h = O(K-Q exp (QK-lB,}) (10.1) 

[see (8.5) and (9.9)]. A corresponding trend, as the collapse moves downstream, 
is clearly evident in both experimental data and numerical solutions (Hill 1966). 
Table 3 summarizes the principal results for the collapse structure. 

For very large values of the growth parameter h the collapse point xk will 
move towards the initial saturation point x,. If K < 1 the collapse remains shock- 



618 P. A .  Blythe and C. J .  Xhih 

Width of Width of 
nucleation growth 

Onset point A D m  zone zone Comments 

z , - x k  = 0(1) O(K-lexp{+K-lB,}) %- 1 O ( K )  O(K$ Shock 
zm-xk = O ( K ) )  O(K-)  exp {+K-lBm}) O(1) O(K*) O(K8)  Shock 
xm-xk = O(K$ O(K-4 exp {+K-lBm}) O ( K ) )  O(K*) 0 ( 1 )  Diffuse 

TABLE 2. Collapse structure 

like, but the shock is now weak and the results for the structure simplify. In  
particular, the profile in the shock zone, as well as that in the nucleation zone, 
can be reduced to a similarity form ($7). The collapse will also occur close to x,., 
for h 1, when K is not small. In  this case the collapse is not necessarily shock- 
like and the local area variation can be important. This type of solution is des- 
cribed by Petty (1968). 
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Professorship at the University of Newcastle-upon-Tyne. 

Appendix A. Normalized variables 
Apart from the mass fraction g', all primed variables have dimensions. De- 

pendent variables are normalized with respect to their values at the initial 
saturation point (T = PIT:, etc.) except that 

u = U'(P0lWT:k 9 = (POlPV) Hg'. (A 1) 

In  (A 1) H = pvL:/WTE, (A 2) 

and W is the gas constant. Since it is assumed that the initial isentrope crosses 
the co-existence line 

The non-dimensional pressure p is related to the partial pressures pv and pi, 
of the vapour and carrier gas respectively, by 

P = ( 1 - w O ) ~ o K ' ~ i  + ~ O P ~ P V ' P ~  (A 4) 

with 

where wo is the reservoir specific humidity (ratio of vapour mass to total mass). 
Obviously, for the molecular weights, 

pol = (1 - wo) pi' +wopu,l. (A 6) 

Similarly Pu = r1- H-lw,lpu,lpu,gl P ,  (A 7) 
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where pv is the normalized vapour density. In  dimensional variables 

p? = p;+p;+p;, (A 8) 
where pf is the density of the condensate defined with respect to  the volume 
occupied by the carrier gas and the vapour. Using these results it is straightforward 
to show, treating the vapour phase of each component as a perfect gas, that the 
equation of state for the mixture reduces t o  (2.7). 

For the growth law (3.5) and the rate equation (3.9) the appropriate normaliza- 
tion is given by 

x = x ' / q ,  P = F'/P;, h = (hi/&) FLTk, r = r'/& (A 9) 

where hi is the nozzle throat height. The characteristic droplet radius r; is deter- 
mined from 

Here pLond is the true density of the condensed phase. Each side of (A 10) repre- 
sents a characteristic mass fraction [see (3.6) and (A l)]. 

Appendix B. Equilibrium flows 
Equilibrium states of a saturated vapour are governed by the Clausius- 

Clapeyron equation (2.1). Using the conservation equations it is not difficult to 
show that the equilibrium solution, in non-dimensional form, is governed by 

Equation (B 1) can be integrated to give 

g-(1-wo)-Tln PO = H(l-T)+c,,TlnT. 
Pl 

For a pure vapour, wo = 1, (B 2) reduces to the known result 

g =H(l-T)+c,,TlnT 

(Buhler 1952). The general integral (B 2) was first given in Shih (1972) 

Appendix C. The choking condition (>Ik > 1) 
As noted in 3 7, choking is possible only if 

2Y To c, = y + 1 -- - > 0, 
y - 1 H  

otherwise 9 > 0 for all g .  The maximum permissible heat addition is defined by 
g' = w,, or S =,U~,U;~W,,H < H. 

On the supersonic branch of the shock relations, upstream of choking, 

(C 2) 

(C 3) 00 > d q d g  > 0. 
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Initially, at  xk, 
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< Fs. If it can be established that 

T" > F:, (C 4) 

where starred variables are evaluated at choking, at least one equilibrium point 
must have been attained upstream of choking. 

From the shock relations 

where 
Hence, for A!& > 1, 

and 

S = g"/H < 1. 

Apparently, from (2.9) with = 1, (C 4) will hold if 

exp [ H ( l -  T?-I)] > p$ 

To > 4(y+ I) ,  

(C 10) 

The results (A 3), (C l), (C 7), (C 8) and (C 9) can be used to est,ablish (C 10) 

(C l l a )  
provided that further 

or, equivalently, ill, > 1. (C l l b )  

Consequently, the asymptotic limit of the shock solution will always correspond 
to a saturated equilibrium state for M, > 1. Conversely, it is necessary, though 
not sufficient, that 41, < 1 for choking to occur. 
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